Preliminary communication

THE SYNTHESIS AND CHARACTERISATION OF NEW TRIOSMIUM AND TRIRUTHENIUM MAIN-GROUP METAL CLUSTERS $M_3(H)(CO)_{11}(M'R_3)$ AND $Os_3(H)(CO)_{10}(CH_3CN)(M'R_3)$ (M = Os, Ru; M' = Ge, Sn; R, aryl, alkyl)

K. BURGESS, C. GUERIN, B.F.G. JOHNSON and J. LEWIS

University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW (Great Britain) (Received June 27th, 1985)

Summary

Displacement of the (CH₃CN) ligand from the compounds $M_3(CO)_{12-n}$ -(MeCN)_n (n = 1 or 2) by organo-germanes and -stannanes provides a general method for the preparation of triosmium- and triruthenium-Main-Group metal clusters of the type $M_3(H)(CO)_{11}(M'R_3)$ and $Os_3(H)(CO)_{10}(CH_3CN)(M'R_3)$ (M = Ru, Os; M = Ge, Sn).

Relatively few carbonyl clusters containing germyl or stannyl ligands have been described [1], and to our knowledge, except for $[(Me_2M')M(CO)_3]_3$ (M = Os and Ru, M' = Ge and Sn) [2,3] and $[Os_3SnH_2(CO)_{10} \{CH(SiMe_3)_2\}_2]$ [4], none contain the triosmium cluster unit. We report here the preparation of a series of compounds of general formula $M_3H(CO)_{11}(M'R_3)$ and $Os_3H(CO)_{10}(CH_3CN)(M'R_3)$ (M = Os, Ru; M' = Ge, Sn; R = aryl, alkyl) through the reaction of the activated clusters $M_3(CO)_{12-n}(CH_3CN)_n$ (n = 1 or 2) with the appropriate germane or stannane.

In a typical experiment, the cluster $Os_3(CO)_{11}(MeCN)$ [5] was treated with one equivalent of Ph_2MeGeH in dry toluene at room temperature under nitrogen, to give the new cluster $Os_3(H)(CO)_{11}(Ph_2MeGe)$. This was readily purified by thin-layer chromatography (silica gel) using a 1/1 mixture of $CH_2Cl_2/hexane$ as eluant. The complexes were obtained as air-stable, yellow or yellow-orange crystals, and have been fully characterised on the basis of their analytical data, IR and ¹H NMR spectroscopy, as shown in Table 1.

The infrared spectra exhibit bands in the terminal carbonyl region, and are similar to those of other well established $[M_3(CO)_{11}HX]$ compounds [5].

0022-328X/85/\$03.30 © 1985 Elsevier Sequoia S.A.

SCHEME 1

$$\begin{aligned} & Ph_{2}RGeH + Os_{3}(CO)_{11}(CH_{3}CN) \xrightarrow{toluene}_{r.t., 12 h} Os_{3}(H)(CO)_{11}(GeRPh_{2}) \\ & (R = Ph, Me) & (70-80\%) \\ & R_{3}SnH + Os_{3}(CO)_{11}(CH_{3}CN) \xrightarrow{toluene}_{r.t., 12 h} Os_{3}H(CO)_{11}(SnR_{3}) \\ & (R = Ph, n-Bu) & (60-70\%) \\ & Ph_{3}M'H + Os_{3}(CO)_{10}(CH_{3}CN)_{2} \xrightarrow{toluene}_{r.t., 5 h} \end{aligned}$$

$$Os_3(H)(CO)_{10}(CH_3CN)(M'Ph_3) + Os_3H(CO)_{11}(M'Ph_3)$$

(70-75%) (5%)

(M = Ge, Sn)

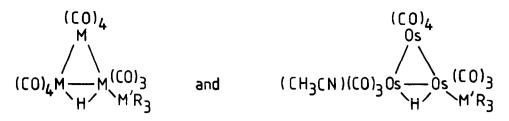
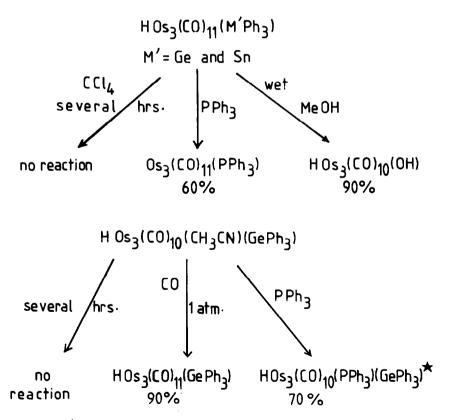

$$\frac{Ph_{3}M'H + Ru_{3}(CO)_{11}(CH_{3}CN)}{(M = Ge, Sn)} \xrightarrow{\frac{CH_{2}Cl_{2}}{-40^{\circ}C, 2h}} \frac{Ru_{3}H(CO)_{11}(M'Ph_{3})}{(60\%)}$$

TABLE 1

ANALYTICAL AND SPECTROSCOPIC DATA

Compound	ν(CO) (cm ⁻¹) ^α	¹ H NMR ^b (δ ppm)	Analysis (Found (Calcd.) (%))			Molecular ^C weight
			c	н	N	(mass spectral) m/e
Os ₃ H(CO) ₁₁ - GePh ₃	2136(w), 2085(s), 2053(vs),	-18.4	29.12	1.36		1190
	2032(m), 2018(m), 2002(s), 1973(w)		(29.41)	(1.35)		
$Os_3H(CO)_{11}$ - (GeMePh ₂)	2136(w), 2083(s), 2053(vs),	18.5	25.84	1.19		1128
	2030(m), 2016(m), 2002(s) 1970(w)		(25.68)	(1.24)		
$Os_3H(CO)_{11}$ - (SnPh ₃)	2136(w), 2084(s), 2054(vs),	18.6	27.91	1.13		1234
	2030(m), 2020(m), 2002(s) 1962(w)		(28.30)	(1.30)		
Os ₃ H(CO) ₁₁ - [Sn(n-Bu) ₃]	2136(w), 2083(s), 2053(vs),	-18.5	23.68	2.31		1174
	2030(m), 2018(m), 2000(s), 1963(w)		(23.60)	(2.39)		
$Os_3H(CO)_{10}$ - (CH ₃ CN)(GePh ₃)	2102(m), 2066(s), 2040(s),	-16.1	31.58	1.79	1.26	
	2020(s), 2003(s), 1987(m)		(30.09)	(1.58)	(1.17)	
$Os_3H(CO)_{10}$ - (CH ₃ CN)(SnPh ₃)	2102(m), 2065(s), 2038(s),	16.4	29.37	1.76	1.09	
	2020(s), 2005(s), 1990(m)		(28.98)	(1.53)	(1.12)	
Ru ₃ H(CO) ₁₁ GePh ₃	2127(w), 2079(m), 2050(vs),	-17.8	38.52	1.78	,	_
	2010(sh), 2004(m)		(38.00)	(1.74)		
$Ru_3H(CO)_{11}(SnPh_3)$	2127(w), 2078(m), 2050(vs),	18.0	35.84	1.86		
	2010(sh), 2003(m)		(36.18)	(1.66)		


^a In CH₂. ^b In CDCl₂, hydride resonance. ^c Based on ¹⁹²Os, ⁷⁴Ge and ¹¹⁸Sn;

M = Os and Ru, M'= Ge and Sn

The ¹H NMR spectra in CD_2Cl_2 shows one singlet high-field resonance, with δ between -16 and -18 ppm, as expected for a bridging hydride ligand [6]. Furthermore the clusters are stable in CCl_4 at room temperature for several hours, which is also indicative of a bridging H ligand [7,8]. On the basis of these observations, we propose a structure involving one bridging H ligand and one terminally-bonded Main-Group metal ligand, as shown in Fig. 1.

Treatment of $Os_3(H)(CO)_{11}(GePh_3)$ with one equivalent of PPh_3 in toluene at room temperature for 5 days results in reductive elimination of Ph_3GeH to afford the known cluster $Os_3(CO)_{11}(PPh_3)$ (80% based upon reacted $Os_3'H$)-

SCHEME 2. * IR(CH₂Cl₂): 2102m, 2066s, 2040s, 2020s, 2003s, 1998m; NMR (δ, ppm): -18.7 (H, d, J(P-H) -10 Hz).

 $(CO)_{11}(GePh_3))$ [5]; wet methanol gives $Os_3H(CO)_{10}(OH)$ quantitatively (Scheme 2). Similar results are observed with $Os_3H(CO)_{11}(SnPh_3)$. Treatment of $Os_3H(CO)_{10}(CH_3CN)(GePh_3)$ with one equivalent of Ph_3P in hexane at 40° C for 4 h results only in displacement of the CH_3CN ligand without reductive elimination of Ph_3GeH . Passing CO into a solution of $Os_3H(CO)_{10}(CH_3CN)$ -(GePh₃) in toluene at 40° C likewise gives a quantitative yield of the complex $Os_3H(CO)_{11}(GePh_3)$ (Scheme 2).

Further studies are in progress in both series, and results of previous work with triosmium clusters bearing silane ligands will appear shortly [9].

References

- 1 K.M. Mackay and B.K. Nicholson, in G. Wilkinson, F.G.A. Stone and E.W. Abel, (Eds.), Comprehensive Organometallic Chemistry. The Synthesis Reactions and Structures of Organometallic Compounds. Pergamon Press, New York, 1982, 6, p. 1043 and ref. therein.
- 2 S.A.R. Knox and F.G.A. Stone, J. Chem. Soc. A, (1970) 3147.
- 3 S.A.R. Knox, C.M. Mitchell and F.G.A. Stone, J. Chem. Soc., A, (1971) 2874.
- 4 C.J. Cardin, D.J. Cardin, H.E. Parge and J.M. Power, J. Chem. Soc., Chem. Commun., (1984) 609. 5 (a) B.F.G. Johnson, J. Lewis and D.A. Pippard, J. Chem. Soc. Datton Trans. (1981) 407: (b) G.A.
- 5 (a) B.F.G. Johnson, J. Lewis and D.A. Pippard, J. Chem. Soc., Dalton Trans., (1981) 407; (b) G.A. Foulds, B.F.G. Johnson and J. Lewis, J. Organomet. Chem., in press.
- 6 A.P. Humphries and H.D. Kaesz, Prog. Inorg. Chem., 25 (1979) 145.
- 7 J.R. Moss and W.A.G. Graham, J. Chem. Soc., Dalton Trans., (1977) 89.
- 8 H.D. Kaesz and R.D. Saillant, Chem. Rev., 72 (1972) 231.